
Week 13 - ETL Project Report

Client engagement
As a small data analytics firm, our client approached us with an urgent project to collect
information about this year’s LEGO sets. They are part of the manufacturing process of the
LEGO sets and want to do predictive data modelling to find out what materials will be more
in demand next year, based on this year’s information.
They have requested the information be put into database format so that it can be accessed
in a way that they are already familiar with.

Team selection
Based on the timeframe of 1 week, we have assigned the following team members to this
project:
o John Bingley
o Daniel Da Sobral
o Cicily George
o Sylvia Broadbent

Required information
Following our research into LEGO sets,
the following information is required to be able to do the predictive data modelling required
by our client:
o Popularity – ratings
o Lego sets – names and themes
o Parts – quantity and colour

We have found that ratings are based on the LEGO sets. It is important to know what sets
are popular to predict future sales. It is also important to look if certain themes are more
popular than others in case new sets are released in the same theme.
Then it is vital that the number, type and colour of all parts can be extracted.

Data Sources (EXTRACT)
Initially we were going to use the LEGO dataset from Kaggle as the base set
(https://www.kaggle.com/hapahacks1/lego-database-2020). It has all the LEGO sets from
2020. As this information was taken from the Rebrickable website, we decided to use an API
to extract this information ourselves.
Upon further investigation we found out that Rebrickable (https://rebrickable.com/home/)
throttles API requests and asks that you download the information instead. So that is what
we did.

The information was downloaded as .csv files. This is the simple version of the ERD (for the
full ERD, please refer to the Appendix):
o Inventories

• Inventory parts
§ parts
§ colours

o inventory minifigs
• minifigs

o inventory sets
• sets
• themes

As there is no information from customers on the Rebrickable website we looked elsewhere
for information about the ratings of the LEGO sets.
We found this information on the Brickset website (https://brickset.com/) and used an API
to extract the information formatted in JSON format.

Data Cleanup (TRANSFORM)
We used the following programs and packages for
cleaning up the data:
o Jupyter Notebook
o Python
o Pandas
o API extraction
o JSON file

In Jupyter Notebook using Python with Pandas we
loaded the .csv files into dataframes. Then we
filtered the information by extracting the
information for this year (2020). In some dataframes we also had to change the names of
some columns to ensure the connection of the tables are possible in the PostgreSQL
database using the primary and foreign keys. Then we dropped the duplicates in the
dataframe to ensure a clean set. In the ‘colors’ dataframe, one column (is_trans) only has
the letters t and f. The letters stand for True and False to provide information if the LEGO
brick is transparent or not. To make it clear, those letters were changed to True and False.

We used an API query to download the information for each LEGO set in 2020. This was
then saved as a JSON file. We used Pandas to read the dictionary inside the JSON file and
extracted the ‘set number’ to ensure we have a joining key and the rating and review count,
which is the information we want to add. The information was saved in a table and joined to
the ‘sets’ table.

Type of Database
As the LEGO tables from Rebrickable each have various references to other tables, we have
chosen to use a relational database. PostgreSQL is particularly suitable for this type of
information as it uses the primary and foreign keys to connect the tables.

pgAdmin & PostgeSQL (LOAD)
As we are using a relational database it is important to verify that the relationships work
and that all information in the database is able to be identified and extracted.
To ensure we are presenting a working database to the client we first used an Entity
Relationship Diagram (ERD) to layout the tables and identify the primary and foreign keys.
Once that information was available the tables were loaded into PostgreSQL via pgAdmin.
The information from the Pandas dataframes was then add to the tables in pgAdmin via a
direct connection to the database in Jupyter notebook.
We have found that it is important to keep the ERD updated as you change names in tables
to ensure the same names are used in the separate tables.
We have also found that if the database exists in pgAdmin, writing the information into the
database will also create the tables.

Delivery
After intensive testing the database was presented to the client. The client was very happy
with the outcome and took possession of the project.

APPENDIX
Entity Relationship Diagram (ERD)

